

lperf 测试工具使用指导

V1.0

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2018/11/5	创建	Lilm	
V0.2	2020/6/2	修订	Cuiyc	
V0.3	2020/7/8	统一字体	Cuiyc	
V1.0	2020/8/10	升级版本号	Cuiyc	

目录

lpe	rf 测记	【工具使】	用指导	1
文档	当修改 [:]	记录		1
目录	₹			2
1	引言			4
	1.1	编写	6目的	4
	1.2	预期	月读者	4
	1.3	术语	宝定义	4
	1.4	参考	等资料	4
2	Iperf	perf 工具简介		
	2.1	使用]方法	5
		2.1.1	固件中 lperf 功能启用方法	5
		2.1.2	固件中 lperf 功能操作方法	5
		2.1.3	PC 端 lperf 工具操作方法	6
	2.2	使用	目示例	7
		2.2.1	模块做 Server 测试	7
		2.2.2	模块做 UDP 测试	7
		2.2.3	模块做 TCP Client 测试	8
		2.2.4	PC 端做 Server 测试	9
		2.2.5	PC 端做 TCP Client 测试	9
		2.2.6	PC 端做 UDP 测试	9
3	注意	事项		9

3.1	物理环境	9
3.2	模块配置1	0
3.3	PC 端防火墙1	0

1 **引言**

1.1 编写目的

介绍 Iperf 测试工具在联盛德芯片上的使用发法,帮助使用者测试芯片的网络性能。

1.2 预期读者

相关开发人员和测试人员。

1.3 术语定义

1.4 参考资料

2 Iperf 工具简介

Iperf 是一个网络性能测试工具, Iperf 可以测试最大 TCP 和 UDP 带宽性能, 可以报告带宽、延迟 抖动和数据包丢失。固件中已经集成了 Iperf 测试功能, 同时也提供了 PC 端的 Iperf 程序, 两者可以配 合进行测试。

2.1 使用方法

2.1.1 固件中 Iperf 功能启用方法

默认的固件中是不包含 Iperf 测试功能的,如果需要使用固件的 Iperf 功能,需要使用者修改 SDK\Src\App\iperf\iperf.h 中的 TLS_CONFIG_WIFI_PERF_TEST 宏,将其改为 CFG_ON,这时候 重新编译生成的固件就具有了 Iperf 功能。

2.1.2 固件中 Iperf 功能操作方法

目前固件中只提供使用 AT 指令进行控制 Iperf 操作,可用的 AT 指令如下:

AT+THT=<Ss>[,-i=interval]

AT+THT=<Cc,ip,UDP,-b=bandwidth,-t=time,-i=interval>

AT+THT=<Cc,ip,TCP,-l=blocksize,-t=time,-i=interval>

其参数代表的含义如下:

- Ss: 一个大写的 S 或者小写的 s 即可, 表示作为 Server 端使用;
- Cc: 一个大写的 C 或者小写的 c 即可, 表示作为 Client 端使用;

interval: 信息打印频率, 十进制表示, 单位秒;

ip:服务端 ip 地址,点分十进制格式;

bandwidth: udp 测试带宽值, 十进制表示, 其单位可用设置如下:

bandwidth	含义
0	不限制带宽,按照最高速速度使用
к	Kbps
М	Mbps

time:测试持续的总时长,十进制表示,单位秒;

blocksize: tcp分块大小,十进制表示,单位字节;

2.1.3 PC 端 Iperf 工具操作方法

PC 端提供的 lperf 测试工具为 "wm_perf.exe", 可以通过使用 "wm_perf.exe -h" 得到其所

有的用法:

Usage:	: wm_perf [-s wm_perf [-}	s -c host] nhe1p]	[options] [-v version]
Client -f, -i, -1, -m, -p, -u,	t/Server: format interval len print_mss port udp	[kmgKMG] # #[KMG] #	format to report: Kbits, Mbits, KBytes, MBytes seconds between periodic bandwidth reports length of buffer to read or write (default 8 KB) print TCP maximum segment size (MTU - TCP/IP header) server port to listen on/connect to use UDP rather than TCP
-w, -M, -N, -T, -v, -v, -d, Serven	window mss nodelay tcpinfo version verbose debug specific:	#[KMG] #	TCP window size (socket buffer size) set TCP maximum segment size (MTU - 40 bytes) set TCP no delay, disabling Nagle's Algorithm Output detailed TCP info print version information and quit more verbose output debug mode
-s, Client -b,	server t specific: bandwidth	#[KMG]	run in server mode for UDP, bandwidth to send at in bits/sec
-c, -n, -t, -P, -T,	client num time parallel tcpinfo	<host> #[KMG] # #</host>	run in client mode, connecting to <host> number of bytes to transmit (instead of -t) time in seconds to transmit for (default 10 secs) number of parallel client threads to run Output detailed TCP info (Linux and FreeBSD only)</host>
Miscel -h,	llaneous: help	1	print this message and quit
[KMG]	Indicates or	otions tha	t support a K.M. or G suffix for kilo-, mega-, or giga-

2.2 使用示例

2.2.1 模块做 Server 测试

给模块发送指令"AT+THT=s,-i=1"即可,这时会有如下显示:

START

```
Server listening on 5201
```

2.2.2 模块做 UDP 测试

如果用作 Server 的 IP 地址为 192.168.19.102, 那么给模块发送指令

"AT+THT=c,192.168.19.102,UDP,-b=5M,-t=10,-i=1"即可,这时会有如下显示:

```
local=192.168.19.101
server: 192.168.19.102
iperf_connect local=192.168.19.101
connected
Connecting to host 192.168.19.102, port 5201
Cookie: 214.366000.1234567890123456789012345
local=192.168.19.101
server: 192.168.19.102
   1] local 192.168.19.101 port 49155 connected to 192.168.19.102 port 5201
Starting Test: protocol: UDP, 1 streams, 1450 byte blocks, 10 second test
[ ID] Interval Transfer Bandwidth
                 548 KBytes 4.49 Mbits/sec
      0-1 sec
   1]
   1
      1-2 sec
                  549 KBytes
                              4.50 Mbits/sec
      2-3 sec
                 551 KBytes
                              4.51 Mbits/sec
   1]
      3-4 sec
                  549 KBytes
                              4.50 Mbits/sec
   1
      4-5 sec
                  551 KBytes
                              4.51 Mbits/sec
   1
      5-6 sec
                  540 KBytes
                               4.42 Mbits/sec
   1
      6-7 sec
                 222 KBytes
                               1.82 Mbits/sec
   1]
      7-8 sec
                 545 KBytes
532 KBytes
                              4.47 Mbits/sec
   1
   1
      8-9 sec
                              4.36 Mbits/sec
      9-10 sec
                  510 KBytes 4.18 Mbits/sec
   1]
[Bandwidth:]4091.7188 кbits/sec
Test Complete. Summary Results:
[ ID] Interval Transfer
                                                                 Lost/Total Datagrams
                                     Bandwidth
                                                       Jitter
   1] 0-10 sec 4.99 MBytes 4.19 Mbits/sec
                                                               0/ 3612 (0%)
                                                      1 ms
   1] Sent 3612 datagrams
```

iperf Done.

2.2.3 模块做 TCP Client 测试

如果用作 Server 的 IP 地址为 192.168.19.102 , 给模块发送指令

"AT+THT=c,192.168.19.102,TCP,-l=1024,-t=10,-i=1"即可,这时会有如下显示:

local=192.168.19.101 server: 192.168.19.102 iperf_connect local=192.168.19.101 connected Connecting to host 192.168.19.102, port 5201 Cookie: 340.462000.1234567890123456789012345 1] local 192.168.19.101 port 64633 connected to 192.168.19.102 port 5201 Starting Test: protocol: TCP, 1 streams, 1024 byte blocks, 10 second test ID] Interval Transfer Bandwidth 250 KBytes 2.05 Mbits/sec 1 0-1 sec 1]1-2 sec 550 KBytes 4.51 Mbits/sec 534 KBytes 1 2-3 sec 4.37 Mbits/sec 3-4 sec 3.42 Mbits/sec 1 418 KBytes 227 KBytes 4-5 sec 1.86 Mbits/sec 1 1 5-6 sec 336 KBytes 2.75 Mbits/sec 322 KBytes 2.64 Mbits/sec 1 6-7 sec 17-8 sec 566 KBytes 4.64 Mbits/sec 8-9 sec 634 KBytes 5.19 Mbits/sec 1]573 KBytes 1] 9-10 sec 4.69 Mbits/sec [Bandwidth:]3545.6000 Kbits/sec Test Complete. Summary Results: [ID] Interval Bandwidth Transfer Sent 1] 0-10 sec 4.33 MBytes 3.63 Mbits/sec Γ Received 4.33 MBytes 3.63 Mbits/sec Γ 1] 0-10 sec iperf Done.

2.2.4 PC 端做 Server 测试

在 PC 端执行 "wm_perf -s -i 1" 即可, 这时会有如下显示:

Server listening on 5201

2.2.5 PC 端做 TCP Client 测试

在 PC 端执行"wm_perf -c 192.168.19.102 -l 1024 -t 10 -i 1"即可。

2.2.6 PC 端做 UDP 测试

在 PC 端执行"wm_perf -c 192.168.19.102 -u -b 5M -t 10 -i 1"即可。

3 注意事项

3.1 物理环境

理想的测试环境是在屏蔽室中进行测试,但是在实际测试中不同的使用环境会测得不同的结果,

因为 WiFi 会受当前所在信道情况的影响比较大,如果当前信道比较忙且干扰毕竟严重,那么测试出 来的网络性能就会比较低。

测试时所用的设备影响也会比较大,如 PC 使用网线连接路由器,那么会比 PC 也用无线连接路 由器要好。测试所用的是笔记本电脑的话,尤其要注意使用电源给笔记本电脑供电,避免电池供电 状态下的笔记本电脑无线网卡会使用节能而降低网络性能。

3.2 模块配置

通常情况下 CPU 频率越高,系统的吞吐率会越高,性能会越好。

3.3 PC 端防火墙

有些系统带有防火墙会造成 iperf 测试失败,这种情况下需要添加放行规则或者关闭防火墙。