MIPI扫盲——DSI介绍(一)
MIPI扫盲——DSI介绍
YUV 是一个颜色模型,通常用作彩色图像管道的一部分。它对彩色图像或视频进行编码时考虑到了人类的感知,与“直接”的 RGB 表示相比,允许减少色度分量的带宽。历史上,术语 YUV 和 Y’UV 用于电视系统中颜色信息的特定模拟编码。今天,YUV 这个术语在计算机行业通常用来描述使用 YCbCr 编码的色彩空间。 YUV 模型定义了一个亮度分量(Y),表示物理线性空间亮度,以及两个色度分量,分别称为 U(蓝色投影)和 V(红色投影)。它可以用于 RGB 模型和不同颜色空间之间的转换。 密切相关的 Y’UV 模型使用亮度分量(Y’)—— 非线性感知亮度,素数符号(‘)表示伽马校正。Y’UV 用于 PAL 模拟彩电标准(不包括 PAL-n)。之前的黑白系统只使用亮度(Y’)信息。彩色信息( U 和 V)通过子载波分别添加,使黑白接收机仍然能够接收和显示接收端原生黑白格式的彩色图像传输,而不需要额外的传输带宽。 至于 Y、Y’、U 和 V 均不是缩写。用字母 Y 表示亮度可以追溯到 XYZ 三原色的选择。这很自然地使得 luma(Y’) 中使用相同的字母,这近似于感知上均匀的亮度相关。同样,选择 U 和 V 是为了将 U 和 V 轴与其他空间(如 x 和 y 色度空间)区分开来。 伽马校正 实际上,研究表明,人类视觉系统是以对数函数的方式来感知光亮度。这意味着,人眼会提高暗部的敏感度,降低高光部分的敏感度。 从数学角度看,感知光强度和测量光强度之间存在一个近似的平方关系,具体如下式所示。 由于人类视觉感知系统不是以线性方式工作的,因此必须使用非线性曲线来对线性数据进行变换,从而使得拍摄的图像色调与我们的视觉系统的工作方式相匹配。这个过程也就是我们所说的伽马校正。 因此,在从线性 RGB 空间转换到非线性...
龙迅半导体(合肥)股份有限公司是一家专注于高速混合信号芯片研发和销售的集成电路设计企业,致力于高清视频桥接及处理芯片与高速信号传输芯片的设计和方案开发,为全球客户提供高性能芯片和系统解决方案。 公司自成立以来,始终坚持以自主创新驱动企业发展,通过产品的高效迭代、技术能力的持续升级构筑全方位的竞争优势,已掌握了多项国内领先或达到世界先进水平的核心技术,先后推出140余款芯片产品服务全球的客户,广泛应用于安防监控、视频会议、车载显示、显示器及商显、AR/VR、PC及周边、5G及AIoT等多元化的终端场景。公司的技术能力与产品性能近年来正持续受到国内外知名客户的认可,已成功进入鸿海科技、视源股份、亿联网络、脸书、宝利通、思科、佳明等国内外知名企业供应链;高通、英特尔、三星、安霸等世界领先的主芯片厂商已将公司产品纳入其部分主芯片应用的参考设计平台中。同时,公司热衷于与合作伙伴的深入交流,对新应用生态进行提前布局,通过自身的创新设计带给客户产品更好的竞争力,携手客户共同成长。 未来,公司将坚持深耕于高速混合信号芯片领域,以“为数字世界创新数模混合信号技术”为使命,致力于通过技术创新提供高性能的芯片解决方案,力争成为世界领先的高速混合信号芯片方案提供商。 龙迅产品选型表下载
CSI旨在为高清摄像头和应用处理器之间提供一个高速的串行接口,举例来说,在目前的智能手机中的摄像头和CPU之间采用的就是CSI协议。目前来说,广泛使用的是其第二个版本CSI-2,最新的版本则是CSI-3。置于CSI-1是否存在,亦或是曾经是否存在暂时无从考证,至少在MIPI的官网是找不到CSI-1的身影了。 CSI-2协议既可以使用与DSI一致的D-PHY物理层协议,也可以使用C-PHY作为物理层协议。而CSI-3则只能使用M-PHY作为物理层协议,也就是说CSI-2和CSI-3之间是不兼容的!具体如下图: 需要注意的是,C-PHY和D-PHY在物理连接上存在多处不同,因此必须保证主机和从机同时使用C-PHY和D-PHY之间的一种作为物理层才能进行有效地通信。具体的差别,参见下图: 差别主要体现在时钟机制上。 显然,采用C-PHY可以获得更高的速率,这也是C-PHY的优势。但是,换一个角度思考,C-PHY只支持CSI-2,而D-PHY同时支持CSI-2和DSI,因此,从设备兼容性,硬件设计成本和灵活性等多个角度来看的话,D-PHY还是具有相当大的优势的。所以目前来说,D-PHY要用的更多一点。 举例来说,Lattice的CrossLink系列器件内部集成了两个D-PHY Harden Core,可以根据实际的需求灵活配置为CSI-2或者DSI,同时也可以使用LUT设计一个Soft Core的D-PHY。从而轻松的完成视频桥接、视频拼接等功能。具体如下: 基于D-PHY v1.1版本的CSI-2不同版本的性能差别如下: